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The finite-frequency optical properties of the underdoped cuprates, in both the normal and superconducting
states, display features which go beyond a Fermi liquid and a Bardeen-Cooper-Schrieffer �BCS� description.
We provide an understanding of these properties within a simplified analytical model, which has been evolved
out of the Hubbard model and ideas based on a resonating valence-bond spin liquid. We find that: �1� in
underdoped samples, the missing area integrals reveal a second energy scale due to the pseudogap, not present
at optimum or overdoping; �2� the real part of the optical self-energy shows a large sharp peak that emerges
with the opening of the pseudogap which exists within the superconducting state and persists in the normal
state; and �3� the amount of optical spectral weight which is transferred to the condensate is greatly reduced by
the presence of the pseudogap as compared to the Fermi-liquid case. These non-BCS features of the super-
conducting state are in good qualitative agreement with a body of experimental work on different cuprate
systems and provide strong evidence from optical conductivity that they are all a manifestation of the
pseudogap energy scale.
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Understanding the approach to a Mott insulator from a
Fermi-liquid state is an important question in correlated elec-
tron physics. The cuprate superconductors provide a model
system for investigating this issue. Indeed, they exhibit non-
Fermi liquid and non-Bardeen-Cooper-Schrieffer �BCS� be-
havior throughout an intermediate doping regime between
the Mott insulator and the Fermi liquid. In the overdoped
regime, the normal state appears to be rather conventional
although the superconducting ground state has d-wave sym-
metry. By contrast, the underdoped regime exhibits non-
Fermi-liquid features related to the pseudogap formation,
which is thought to be responsible for many of its anomalous
normal-state properties.1 In addition, in this regime, there is
evidence that the pseudogap and superconducting correla-
tions compete and both provide their characteristic imprints
on superconducting properties, such as the two separate en-
ergy scales seen in Raman scattering.2 An important bulk
probe of materials is finite-frequency optical conductivity for
which a considerable quantity of data has accumulated about
the cuprates as a function of doping and in different systems.
From this it is clear that the optical properties display
anomalous behavior which is non-Fermi liquid and non-
BCS-type. This behavior has not been fully understood from
a theoretical point of view nor has it been brought together to
provide a conclusive statement about the effect of a
pseudogap energy scale in the superconducting state. In this
communication, we demonstrate that the non-BCS behavior
can be understood as due to a second competing pseudogap
energy scale within the superconducting state. We provide
three results in comparison with experiment which support
this significant conclusion.

While several approaches to the modeling of the unusual
normal state of the cuprates have been proposed and exam-
ined, such as d-density waves3 and phase incoherent pre-
formed pairs above Tc,

4 few have been able to address suc-

cessfully the superconducting state or the evolution of
properties with doping. Work on the Hubbard �and related
models�, thought to be a good candidate for describing the
cuprate phase diagram, has been largely numerical but re-
cently some progress has been made toward providing ana-
lytic approximations to these works which can facilitate ease
of calculation and provide a deeper understanding of the un-
derlying physics. In order to examine the issue of the optical
conductivity and its non-BCS behavior, we have chosen to
adopt an analytical approach proposed by Yang et al.,5 which
is evolved out of work that has its basis in the Hubbard
model,6 and the ideas of a resonant valence-bond �RVB� spin
liquid proposed by Anderson.7,8 The coherent part of the
electronic Green’s function in this theory encodes the anti-
ferromagnetic Brillouin zone with pseudogap formation, as
the Mott transition is approached. We use this formalism to
calculate the in-plane optical conductivity ���� in order to
provide an understanding of the anomalous superconducting
behavior seen in quantities such as the partial optical sum
and the optical self-energy.

In the analytical model used here, the coherent part of the
electronic Green’s function takes the form5

G�k,�� =
gt

� − ��k� − ��k,��
, �1�

with self-energy

��k,�� = �pg +
��sc�2

� + ��k� + �pg�k,− ��
. �2�

The pseudogap self-energy is given by �pg�k ,��
= ��pg�2 / ��+�0�k��. In these formulas gt is the relative
weight of the coherent part of the Green’s function, which
we set equal to one. There is also an incoherent piece not
included here. The superconducting gap �sc and pseudogap
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�pg are both assumed to have d-wave symmetry, i.e., ��k�
=�0�x��cos�kxa�−cos�kya�� /2, within the two-dimensional
square CuO2 Brillouin zone. The doping �x� dependence of
their amplitude �0�x� is given in Ref. 5 for a particular case
and is reproduced here in Fig. 1�a�. Finally, ��k� is the elec-
tronic dispersion and �0�k� the first-nearest-neighbor-only
version, with �0�k�=0 defining the antiferromagnetic Bril-
louin zone. In Fig. 1�b�, we show the Luttinger surfaces of
the theory for the parameters of Ref. 5. The shaded blue
areas correspond to occupied states containing an area pro-
portional to 1−x and the white pockets within the first anti-
ferromagnetic Brillouin zone enclose an area proportional to
x. To compute the in-plane optical conductivity one needs to
know, in addition to the Green’s function, the Gorkov
anomalous amplitude denoted by F†�k ,�� and given by

F†�k,�� =
− �sc

† G�k,��
� + ��k� + �pg�k,− ��

. �3�

From these, the conductivity ��T ,�� follows from the Kubo
formula,

��T,�� =
e2

2�
�
k

vk
2�

−�

� d�

2	
�f��� − f�� + ���


 �A�k,��A�k,� + �� + B�k,��B�k,� + ��� ,

�4�

where f��� is the Fermi-Dirac distribution function at tem-
perature T, vk is the electron velocity, and the spectral func-
tions are given as A�k ,��=−2 Im G�k ,�+ i0+� and B�k ,��
=−2 Im F†�k ,�+ i0+�. We present results at T=0 for the ge-
neric band structure and parameters suggested for cuprate
systems.5

In Fig. 2, we show �1��� /A as a function of photon en-
ergy � / t0, where t0 sets the energy scale of the first-nearest-
neighbor hopping parameter. The normalization A has been
defined as the area under the conductivity curve in the nor-
mal state for x=0.2 �optimally doped�. Figure 2�a� is for x
=0.05 �highly underdoped� and Fig. 2�b� is for x=0.1, just
inside the inner edge of the superconducting dome as shown
in the phase diagram of Fig. 1�a�. In Figs. 2�c� and 2�d�, we
plot the corresponding color maps of A�k ,�=0� which pro-

vide information about the Fermi arcs as a function of dop-
ing. In Figs. 2�a� and 2�b�, the dashed black curves contain
no pseudogap and are similar to a Drude form, while the
solid red curves contain a finite �pg. In all our calculations
we have replaced the Dirac delta functions in the spectral
densities A and B with Lorentzians of width 0.01t0. Twice
this value gives the corresponding transport width 1 /�. The
solid red curves, in contrast to the dashed curves, deviate
strongly from Drude behavior. The optical spectral weight in
the Drude-type distribution centered at �=0 is greatly re-
duced, and some, but not all is transferred to the interband
transition region. The onset of the region to which this
weight is transferred, is close to �pg

0 for x=0.1 but falls con-
siderably short of �pg

0 for x=0.05. The reason for this is that
the gap value on the Luttinger pockets is much smaller than
�pg

0 �see Fig. 2�c��. For both dopings, the rapid drop denoting
the end of the interband region is located at approximately
2�pg

0 . These onset energies can be traced to peaks in the
electronic density of states. Not all the optical spectral
weight lost in the Drude region is recovered in the interband
region at higher energies. We are dealing here only with the
coherent part of the Green’s function. In a more complete
theory some of the missing weight could be transferred from
coherent to incoherent part. Similar to our result, a two-
component optical conductivity has also been found in nu-
merical work9 on the t−J model.

In Fig. 3 we compare the normal state �dashed black
curve� with the corresponding superconducting state �solid
red curve� for �a� x=0.14 and �b� x=0.2. In this latter case,
�pg=0 so that the corresponding Luttinger surface reduces to
the usual large Fermi surface of Fermi-liquid theory �Fig.
3�d��, and the real part of the conductivity, �1���, in the
superconducting state behaves in a conventional way. For an
s-wave superconductor there would be a gap of 2�sc

0 in
�1��� with all optical spectral weight below this energy go-
ing into the condensate and at higher energies, the normal-
state conductivity is recovered. However, here the gap has
d-wave symmetry, and some weight remains in the Drude
region below 2�sc

0 .10 Figure 3�a� is more unusual because the
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FIG. 1. �Color online� �a� Maximum value of the pseudogap and
superconducting gap in units of t0 versus doping �x� dependence
�Ref. 5�: �pg
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−0.2�2�. �b� Luttinger area in the pseudogap state for four dopings
indicated with arrows in �a�. kx and ky are in units of 	 /a, with a as
the lattice spacing. G�k ,0��0 for the shaded region, the area of
which satisfies the Luttinger sum rule.

0

0.1

0.2

0.3

0.4

0.5

σ 1(ω
)/

A

FL
PG

0 0.2 0.4 0.6 0.8 1
ω/t

0

0

0.2

0.4

0.6

0.8

σ 1(ω
)/

A

x=0.05

x=0.10

(a)

(b)

k y

�c�

kx

k y

�d�

FIG. 2. �Color online� ��a� and �b�� Optical conductivity curves
with �solid red curve� and without �dashed black curve� a
pseudogap. ��c� and �d�� Plots of A�k ,�=0� to show the Fermi arcs,
with kx and ky as labels normalized as indicated in Fig. 1.
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pseudogap, which exists in the normal state, is responsible
for depleting the Drude peak and transferring weight to the
interband region. Adding superconductivity further depletes
the Drude region below 2�sc

0 although it does not eliminate it
completely. In addition, and this goes beyond the BCS
model, it shifts the onset of the interband transitions to
higher energies. The differences between the cases with �Fig.
3�a�� and without �Fig. 3�b�� a pseudogap are further empha-
sized in Fig. 4, where we show the real part of the conduc-
tivity for x=0.14. The residual scattering rate is 2=0.02t0
in both cases. The shaded regions show the missing area
under �1��� due to the superconducting transition. Frame �a�
is conventional d-wave BCS behavior, but frame �b� is
anomalous. Comparing between �a� and �b�, below � / t0
�0.2, �1

S��� is not affected much by pseudogap formation
because the remaining absorption �Drude� only involves the
nodal direction. However, in this energy region �1

N��� is
much larger in �a� than it is in �b� because in this latter case
the antinodal direction is gapped out with its spectral weight
transferred to the interband transitions. Note that this inter-

band piece contains about 20% of the condensate. This is
further elaborated upon in �c� where we show results for the
missing area partial optical sum S���=	0+

� ��1
N���

−�1
S����d�. The dashed blue curve is without, while the solid

red curve is with a pseudogap. Pseudogap and superconduct-
ing energy-gap scales are indicated by arrows. The dashed
blue curve, normalized to S���, rises rapidly to its saturation
value on the scale of the superconducting gap for the particu-
lar residual scattering rate used �a quantity also involved in
determining the rate of initial rise�. For the solid red curve,
this first rise is also clearly visible but in addition there is a
second region of slower rise on an energy scale set by the
pseudogap which involves about 20% of the condensate.
This behavior has been qualitatively verified in the experi-
mental work of Homes et al.11 for YBa2Cu3O6.95 �no
pseudogap� and YBa2Cu3O6.60 �with pseudogap� �see Fig. 7
of Ref. 11�. A quantitative comparison is not possible be-
cause in the analysis of the experimental data, the normal
state at low temperature is not available and its value just
above Tc is used instead. Still the pseudogap scale is seen
only in the underdoped case.

In the inset of Fig. 4�c�, we show the fraction of the total
available optical spectral weight that goes into the conden-
sate as a function of doping. For an ordinary s-wave BCS
superconductor this amount would be 100% in the clean
limit, 1 /���sc

0 , as it would also be for a d-wave gap. The
entire optical spectral weight condenses and the zero-
temperature penetration depth depends only on normal-state
parameters and not on the value of the gap. For finite 1 /� this
no longer holds and the amount in the condensate is reduced
with the reduction depending on the relative size of 1 /� to
�sc

0 . However, when a pseudogap is introduced, the conden-
sate fraction is further reduced. This can be traced to the
transfer of spectral weight from the Drude to the region
above �pg

0 where it is not as susceptible to condensation.
Note in particular the points at x=0.14. The open circle with-
out pseudogap is close to 70%, while the opening of a
pseudogap reduces this value to roughly 40%, less than half
the electrons participate in the condensation. This is an im-
portant result associated with the non-BCS behavior of this
theory and for which there is experimental evidence.12

Finally in Fig. 5, we present our results for the real part of
the optical self-energy �op���. It has become common in
correlated systems to describe the conductivity ���� in terms
of a generalized Drude form13 with ��T ,��= �i�p

2 /4	� / ��
−2�op�T ,���, where �p is the plasma frequency. For the
identification of the pseudogap in in-plane optics it was re-
cently found that �1

op�T ,�� is a more useful quantity14 than is
the conductivity itself, and it shows a prominent “hatlike”
structure seen above a large inelastic background. Prominent
peaks in �1

op�T ,�� can arise from either pseudogap or super-
conducting gap formation15,16 when the inelastic scattering,
described by the incoherent part of the Green’s function, in-
volves sharp boson structure on the same energy scale. In the
present work such structures arise even though inelastic scat-
tering is not accounted for. While it is not clear exactly how
to separate coherent and incoherent contributions, Hwang et
al.16 removed a background from their data presented in their
Fig. 19 for the Bi2Sr2CaCu2O8+� �Bi2212� series. The results
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of our calculations, which are shown in Fig. 5�a� for various
values of doping x, are best compared with these data for one
of the most underdoped samples studied with Tc=67 K, re-
produced in Fig. 5�b� �solid blue curve�. Pseudogap effects
are large in this case and dominate the peak formation, which
is also hardly affected by superconductivity in both experi-
ment and theory. Taking t0=450 meV and x=0.15, the black
dot-dashed curve is reproduced in Fig. 5�b�. The agreement
with data is reasonable particularly as we have not used pa-
rameters specific to Bi2212 but instead stayed with those for
Ca2−xNaxCuO2Cl2 given in Ref. 5. The subtraction of the
incoherent contribution to �1

op�T ,�� may also be responsible
for some of the discrepancies seen beyond 
900 cm−1. As
stated the peaks of Fig. 5�a� are greatly reduced with increas-
ing doping, a trend confirmed in the normal-state experimen-
tal data.

In summary, we have been able to explain three major
anomalous experimental observations from finite-frequency
optical conductivity measurements on several different cu-
prate systems where non-BCS behavior is exhibited as a
function of doping. Such non-BCS behavior is understood in
our work to result from a pseudogap-type energy scale
present in the normal state which also manifests itself within
the superconducting state. Comparison of our theoretical re-
sults with optical data in the Bi2212 series reveals good
qualitative agreement for the evolution with doping of both
position in energy and size of the normal-state hatlike struc-
tures seen in the real part of the optical self-energy. In addi-
tion, the partial optical sum reveals that a second energy
scale related to the pseudogap exists in underdoped samples
and is not present in optimally or overdoped samples, as seen
in the data of Homes et al.11 for YBa2Cu3O7−�. Another sig-
nificant result of our analysis is that the opening of a
pseudogap greatly reduces the percentage of carriers that
condense in the superconducting state as compared to BCS.
We stress that optical conductivity is a bulk probe applicable
to many cuprate systems, as opposed to surface probes such
as scanning tunneling and angle-resolved photoemission
spectroscopies which are mainly limited to the Bi2212 sys-
tem. Consequently our analysis provides strong support that
the observed non-BCS behaviors seen in several cuprate sys-
tems, and their doping dependence can be described via a
theory, such as we have used here, based in the Hubbard
model and ideas of a RVB spin liquid.
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